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What is AI?
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Source: Niven Singh (https://software.intel.com)



Where is AI used?
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Source: Niven Singh (https://software.intel.com)



Why do we care?
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March, 2018

https://www.tractica.com/newsroom/press-releases/artificial-intelligence-driven-hardware-sales-will-reach-115-billion-worldwide-by-2025/

Reproduced by permission of Tractica



Speaker Bio: Igor Arsovski

• Igor Arsovski is the Chief Technical Officer of the 
GlobalFoundry’s ASIC Business Unit. He is responsible 
for ASIC Artificial Intelligence Strategy including IP and 
Methodology.  

• His narrow focus is in semiconductor memories. His 
extended focus is energy efficient building blocks for 
Machine Learning and Automotive Electronics including 
3D memory integration.

• Igor has authored 15 IEEE papers, and filed over 80 US 
patents.
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Predictions for the future of Artificial Intelligence: 
(some predict the emergence of the singularity by 2045)

• Most AI future predictions assume Moore’s Law continues

• More than Moore architectures and packaging are going to be key to enable AI
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https://futurism.com/



Artificial Intelligence Devices Classification:

Training & Inference (Automotive Example)
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Artificial Intelligence Image Recognition Example

• Pattern recognition requires lots of Multiplication and Accumulations (MAC) 

• Large data-sets requires large amount of Memory and MAC units

• Value of devices measured in TOPS/s and TOPS/W
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Multiply and Add 
Sum(Activations   x   Weights)  = New Activations

W[0:n]
A[0:n]



Artificial Intelligence:  Industry Trends 

• Quest for higher-performance / lower energy per operation

• CPU to FPGA progression can be made without a chip-design team

• Move to ASIC requires a fully staffed design team
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Energy Optimization in a AI designs
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Packaging Options to Meet AI Needs 
Power, Performance & Cost Needs
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2D Packaging

2.5D Integration

3D Integration
 1st in volume production with 32nm

 Lowest interface power & smallest form factor

 14nm HBM interface hardware verified

 Stitched interposer capability for large designs

 Signaling speed increasing 30G to 112G



3D SRAM Memory Advantage

 Memory Capacity & Energy/Access critical for AI applications

 3D stacking enables multiple node memory density scaling
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Speaker Bio: Kailash Gopalakrishnan 

Kailash Gopalakrishnan is a Distinguished Research Staff 
member at IBM Research where he manages the Accelerator 
Architectures and Machine Learning group at the T. J. Watson 
Research Center, N.Y. Kailash has led work in the areas of 
semiconductor devices, emerging memory technologies, novel 
computer architectures, ASIC design and deep learning 
algorithms. His current passion is centered around hardware-
software co-design of specialized architectures optimized for 
deep learning acceleration by pushing the boundaries of 
approximate computing techniques. He has a Ph.D. in Electrical 
Engineering from Stanford University and is a member of the 
IEEE.
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Overview

• Deep Learning Training & Inference today:
• Training: Many big chips (300W) connected through proprietary links for inter-chip gradient 

reduction. Racks / pods in the data center – largely accelerator-centric (> 2:1 / 4:1 over CPUs) .
• Inference: Huge push @ the edge + Standard PCIe attached < 75W cards in the data center. 

• Strategic Thrusts:
• Use of Approximate Computing techniques (scaled precision tuning, compression,... ) to reduce 

computation and communication for Deep Learning – training and inference.
1. Scaled Precision for Training (16/8?/4? bits) and Hyper-scaled precision for Inference (8/4/2?/1?bits). 

Impact on packaging and cooling for training.   
2. Use of Compression techniques to minimize bandwidth needs for Training. Impacts packaging.

• Using these techniques to define new cores for A.I. & Deep Learning SoCs. 

2018 IEEE 68th Electronic Components and Technology Conference  │  San Diego, California  │  May 29 – June 1, 2018 14

{0,	7,	1,	8,	…}

*Primarily a further out research perspective. This brief presentation reflects my research team’s views largely – and not 
those of IBM Corp broadly.



Deep Learning Training : Computation vs. Communication 

• Deep Learning Training is a battle between raw computational throughput (Flops), 
memory bandwidth (MBW) and communication bandwidth (CBW).

• Plenty of powerful 300W accelerators with lots of Flops trying to work together on 1 large problem. 

• Compute Precision improves Flops significantly – but stresses CBW and MBW. 
• MBW & CBW are stressed since compute throughput grows ~ quadratically with reduction in precision.

• (Lossy) Compression techniques can dramatically improve CBW – but need to be low 
overhead and should not impact algorithmic convergence. 

• Will these techniques obviate the need for high bandwidth peer-to-peer connections?
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AdaComp : Lossy Compression
(>50X) Training with 16-bits of precision

Deep Learning Processor Core for AI Training and Inference 
(2018 Symposium on VLSI Circuits): To be presented in June 2018



Peek into the Future

• DL Law of Precision Scaling  expect continuous further reduction in precision.
• 8-bit Training on the horizon (end of the decade?)  followed by 4-bit a few years out?

• Hyper-scaled Precision optimized DL core and system architectures – to improve computational 
efficiency.

• Expect severe memory bandwidth bottlenecks (i.e. beyond 2.5D and HBM)
• Will drive the use of 3D stacking – memory (cache/scratch-pads) on top of of the processor for 

compute efficiency improvements.

• Thermal challenges - given the high (>300W) power envelope

• Off-chip I/O for peer-to-peer accelerator connections is a little less predictable
• Past few generations have pushed more I/O links into the accelerator (e.g. NVLINK). 

• DL Compression schemes (if > 50X) may significantly reduce bandwidth needs.

• This could simplify packaging & board design and facilitate the use of standard compliant links.
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Speaker Bio: Andrew Putnam

• Principal Engineer in Microsoft Azure

• Joined Microsoft Research in 2009 after Ph.D. from U. of 
Washington CSE

• Co-Founder of the Microsoft Catapult project, the first to 
put FPGAs in every server in the datacenter

• Bing web search acceleration

• Azure SmartNIC for Accelerated Networking

• Project BrainWave deep learning acceleration platform

• Currently leading the Azure SmartNIC FPGA team in Azure 
Networking
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Cloud Growth is Exponential
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Toward Specialization
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http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

~50%+ / year

~20% / year

~3%

Source: Bob Broderson, Berkeley Wireless group

CPU performance isn’t increasing So now we need to specialize

http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/


FPGAs in the Datacenter – Project Catapult

• Bump-in-the-wire architecture

• One FPGA in every server 
Microsoft has deployed since 2015
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0.5m QSFP cable from NIC to FPGA

~3m QSFP cable from FPGA to TOR

FPGA

NIC

Microsoft now does RTL design!



Project Brainwave – Deep ML on FPGA
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Deep Learning Applications
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$42

ResNet-50:  8 billion operations per image



Why not ASICs?
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Software FPGA ASIC



Speeding ASIC Integration via Chiplets

• FPGA provides common interfaces
• DDR, PCIe, Ethernet, I2C can all be FPGA

• Focus on just the core value of your ASIC

• Use FPGA logic for common software API 
and “future proofing” interfaces

• Allows using separate process technology 
from FPGA

• Not necessarily specific to Intel 
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A Word of Caution – Amdahl's Law

• Deep Learning is generally only 
part of the full algorithm

• Still need general-purpose CPU 
platforms tightly integrated
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And ruiner

of accelerator 

dreams



Conclusions

• Silicon customization is coming to the Cloud

• Deep Learning is pushing High-Performance Computing (HPC) from 
specialized clusters into the general-purpose fleet

• Network latency is critical… but so is cost

• Advanced packaging can greatly accelerate ASIC adoption in the cloud 
while still keeping pace with changes in AI/ML/Deep Learning
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Speaker Bio: Dan Oh

• EXPERIENCE 

• Samsung Electronics, Package Development Team, Vice President 
(present)

• Intel Corporation, Programmable Solution Division, SI/PI Architect (Aug. 
2016)

• Rambus Inc. Technical Director (June 2012)

• EDUCATION

• Ph. D. Electrical Engineering, University of Illinois at Urbana-Champaign

• Publication

• 66 patents and patent applications

• Over 100 papers in IEEE journals and conferences

• Book “High-speed Signaling: Jitter Modeling Analysis, and Budgeting.”
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Package Paradigm Shift

2018 IEEE 68th Electronic Components and Technology Conference  │  San Diego, California  │  May 29 – June 1, 2018 28

PKG on PKG

Logic

DRAM
DRAM

2000

No PCB

~ 1㎜

PKG + PCB

Logic DRAM

1990

>10㎜
distance

Chip-to-chip

• Demands for low-power & high-performance accelerate chip-to-chip integration

• Integration technology continues to drive wider interconnects

SiP

Silicon -
Interposer

2010

Silicon PKG

~ 0.1㎜

Logic HBM

Si Interposer

HBM

RDL - Interposer

Interconnect Only

2018

Logic HBMHBM

3D-SiP

2020

Pad2Pad Bonding

~ 0.01㎜

Logic

Core A SRAM Core B

TSV



Package Technology Evolution
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Logic and Memory Integration for AI
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GDDR6 vs HBM
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Potential Memory Architectures
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3D memory integration addresses
Power, Throughput, Latency and area except Cost  
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Future 3D System Integration Schemes
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Conclusions

• Package integration continues to drive new computing 
architectures

• From 1D to current 2.5D, and moving onto 3D…

• Silicon interposer and HBM serve current AI training needs
• 3D integration serves further training requirements

• Inference may require new memory solutions
• Small high bandwidth memory or

• Low latency SRAM devices
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Speaker Bio: Madhavan Swaminathan 

Professor Madhavan Swaminathan is the John Pippin Chair in
Microsystems Packaging and Electromagnetics in the School of
Electrical and Computer Engineering and Director, Center for Co-
Design of Chip, Package, System (C3PS), Georgia Tech. He is the author
of 450+ refereed technical publications, holds 30 patents, primary
author and co-editor of 3 books, founder and co-founder of two start-
up companies and founder of the IEEE Conference Electrical Design of
Advanced Packaging and Systems (EDAPS) sponsored by EPS.
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Limits of Modern EDA

• The need for design “re-spins” has not been eliminated

• Many of the observed failures during qualification testing are the direct result of 
an insufficient modeling capability

–Sources of such failures include mistuned analog circuits, signal timing 
errors, reliability problems, and crosstalk [*]

• Simulation-based design optimization has had only limited success

–Simulation “in-the-design-loop” often too slow and leads to impractical 
designs

[*] Harry Foster, “2012 Wilson Research Group Functional Verification Study,” 
http://www.mentor.com/products/fv/multimedia/the-2012-wilson-research-group-functional-
verification-studyview
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Model-Based Design Paradigm
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• Fast-to-evaluate “learned” model replaces detailed slow model in 
design, and design optimization/feasibility problems



Optimization using ML

 Main objective is to use ML based optimization to automate the design cycle and minimize human 

intervention on optimization and tuning of control parameters of integrated systems.

 Active Learning:

 uses zero training data.

 ensures convergence to global optima while minimizing the required CPU time.

 capability of handling very large number of parameters (50+).

H.M.Torun, M.Swaminathan et al, 
TVLSI, 2018



Integrated Voltage Regulator Optimization

Overall IVR Architecture Embedded Solenoidal Inductor

Hand Tuned Non-Linear GP-UCB IMGPO TSBO

Inductor

Area

11.3 mm2

(+56.1%)

25.19 mm2

(+79.6%)

5.18 mm2

(%0.4)

6.64 mm2

(%28.1)
5.16 mm2

Peak 

Efficiency
79.4% 78.6% 84.9% 84.4% 85.1%

CPU Time N/A
>185 min

(+72.9%)

117.33 min

(+57.4 %)

115.6 min

(+56.7 %)
50.1 min

 Integrated Voltage Regulators are used to increase efficiency and conserve power in microprocessors (Ex: Intel Gen

4)

 Objective is to maximize IVR efficiency while minimizing inductor area

 IVR efficiency is affected by inductor and buck converter.

 Assuming LDO, PDN and LOAD is fixed.

 Solenoidal Inductors with magnetic cores are used

 Multiple trade-offs: ESR, DC resistance, inductance, lateral area

 Tune inductor control parameters to maximize efficiency (8 – 10 dimensions)
Hand Tuned: S. Mueller et al., ECTC’16.
Optimized:H. M. Torun et al., TVLSI ‘18

Embedded Solenoidal Inductor



Design Space Exploration (using Transfer Learning)

 Design space exploration involves developing models for many different topologies.

• Ex: Sigle-ended vs differential signaling, shielded vs unshielded signal lines etc.

 Different topologies can share information that can be exploited using transfer learning to significantly 

reduce CPU time and effort to derive new models.

Lots of Data for 
Design Option #1

Input 
Parameters #1

Input 
Parameters #2

Predictive 
Model #2

Input 
Parameters #1

Input 
Parameters #2

Lots of Data for 
Design Option #2

Lots of Data for 
Design Option #1

Very Scarce 
Data for Design 

Option #2

Predictive 
Model #2

Predictive 
Model #2

Predictive 
Model #2

Transfer 
Learning

Conventional Method
(Different Model for Different Designs)

Proposed Method
(Re-use previous model to derive new model)



Model transfer from Microstrip to Stripline

 The goal is derive a model to predict 

frequency dependent RLGC parameters 

for both microstrip and stripline

structures.

Model for microstrip line has already 

been developed and validated to have 

high accuracy (assumption – prior data)

 The model for microstrip is then re-used

using transfer learning to derive a new 

model for stripline.

 Preliminary results show transfer 

learning approach significantly reduces 

CPU time to derive the model for 

stripline compared to different models 

for each structure.



Design Space Exploration using ML

High-Dimensional Data
 Inference
 Optimization
 Hardware Security
 Sensitivity
 Yield
 Manufacturability

Mapping to Low Dimensional Space



And to you Skeptics….

Machine Learning can help

Eliminate the frustrations of Design and Simulation by AUGMENTING the engineer but never 
REPLACING the engineer. Engineers are the thinkers! Computers are the doers! Machine 
Learning is the enabler!  



Q&A
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